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Talk structure 

• 3D geometry 

• Projective geometry 

• Problem Statement 

• Minimum Geometric Problems 

• Least squares, Moore-Penrose pseudoinverse, SVD 

• Nonlinear Least Squares 

• Intermezzo I – computing derivatives 
• Symbolic / Numerical differentiation 

• Dual numbers 

• Lie groups basics 

• Handling Severe Nonlinearity 
• Levenberg Marquardt 

• Dogleg 

• Handling outliers – robust estimation 

• Intermezzo II – solving linear systems 
• Direct methods 

• Schur complement trickery 

• Iterative methods 

• Inexact step NLS 

• Calculating covariances 
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3D Geometry 

• Position representations 

• Euclidean 𝑥, 𝑦, 𝑧  3D 

• Inverse depth 𝑥
𝑧 , 𝑦

𝑧 , 1
𝑧   3D 

• Inverse distance 𝑥, 𝑦, 𝑧, 1
𝑑 , where 𝑥, 𝑦, 𝑧 = 1 1D 

• Rotation representations 

• Rotation matrix 𝒓, 𝒖, 𝒇   9D 

• Hard to constrain orthogonality in numerical manipulation 

• (Unit) Quaternion 𝑥, 𝑦, 𝑧 · sin θ
2 ,cos θ

2  4D 

• Double cover of SO(3)! 

• Axis-angle 𝑥, 𝑦, 𝑧 · θ   3D 

• Exponential map of 𝔰𝔬(3) 𝑥, 𝑦, 𝑧 · θ
×

 3D 
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Projective Geometry 

• Use homogenous coordinates 

• [x/w, y/w, z/w]  [x, y, z, w] 

• Projection matrix 

• Vision  

𝑓 𝑠 𝑐𝑥

𝑓 𝑐𝑦

1
1 0

 

• OpenGL 

2𝑛

𝑟−𝑙

𝑟+𝑙

𝑟−𝑙
2𝑛

𝑡−𝑏

𝑡+𝑏

𝑡−𝑏
𝑛+𝑓

𝑛−𝑓

2𝑛𝑓

𝑛−𝑓

−1
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We‘re not 

interested in the w 

coordinate (it is 

„always“ 1). 

Leads to division 

by depth. 



Pinhole Camera Model 

• Stolen from Bronek Pribyl‘s VGE lecture (I think) 
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P 

principal axis 

image plane 
camera 

centre 

x X 

dimension 

wrangling 

magic pose intrinsics K 

= K [R t] 



Other Camera Models 

• Spherical 

• Curvilinear 

• Catadioptric 

• … 
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Lens Distortion Models 

• Brown's radial distortion model 

 

   𝑥𝑑 = 𝑥 1 + 𝑓 𝑥 − 𝑐𝑥 𝑐𝑦  

 

• Here, 𝑓 ∙  is typically a polynomial function, e.g.: 
 
𝑓 𝑎 = 𝑎3 𝑎5 𝑎7 𝑇𝒇 , 

 

where 𝒇 is a vector of polynomial coefficients 
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Lens Distortion Models 

• Problem with invertibility of polynomial 𝑓 ∙  

• Use analytical solution for low degrees 

• Otherwise use gradient descent 
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𝑓 𝑟  

𝑔 𝑟 1 + 𝑓 𝑟 =
1

1 + 𝑓 𝑟
− 1 

𝑟 = 𝑥 − 𝑐𝑥 𝑐𝑦  

𝑔 𝑟  



Problem Statement 

• Bundle Adjustment 

• „Having a lot of images of 

a scene, let‘s build a 3D model“ 

• Sparse approach (bundler) 

• Find interest point in the images 

• Match the interest points 

• Calculate spatial rotation / translation between images 

• Triangulate points 

• Semi-dense approach (LSD) 

• Somehow triangulate points in the first camera pair 

• Color the points (from image pixels) 

• For following cameras, reproject the 3D points, optimize 
rotation / translation to minimize color difference 

• Dense approach (PMVS / CMVS) 
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Problem Statement 

• Bundle Adjustment 

• „Having a lot of images of 

a scene, let‘s build a 3D model“ 

• Sparse approach (bundler) 

• Semi-dense approach (LSD) 

• Dense approach (PMVS / CMVS) 

• Solve dense pixel correspondences 

• Early methods modifications of dynamic programming 

• Gives per-pixel dense depth 
• Requires known relative camera poses (ok for stereo) 

• Can solve alignment by e.g. Iterative closest point (ICP) 
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Bundler / Sparse Approach 
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Minimal Geometric Problems 

• How do we calculate positions from images? 

• MGPs! http://cmp.felk.cvut.cz/mini/  

(also recent VGS-IT by Tom Pajdla) 

 

• Given a bare minimum of data, get solution by 

applying some geometric constraints 
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Minimal Geometric Problems 

• Five-point algorithm [Nister et al. 2004] 

• Given five 2D points, find [R t] between the cameras 

• Employs Epileptic geometry 

• Fundamental matrix  F = K2
-T([t]×R)K1

-1 = K2
-TEK1

-1 

• Epipolar constraint x‘Fx = 0 

• Solve 10th order polynomial meh 

• Decompose E to R and t multiple (im)possible solutions 
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Minimal Geometric Problems 

• Perspective three Point (P3P) [Kneip et al. 2013] 

• Given three 3D points and their 2D observations,  

find [R t] of the observing camera 

• From knowledge of K, convert 2D observations to 3D 

directions 

• Leads to quartic equation 

• Up to four solutions 
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Minimal Geometric Problems 

• Kabsch‘s algorithm [Kabsch 1976] 
• Many variants (Coustias, Horn, Umeyama, …) 

• Given two sets of 3D points, calculate [R t] that aligns 
them 

• Calculate centroids 𝑐1 =
1

𝑁
 𝑥𝑖

𝑁
𝑖=1  and 𝑐2 =

1

𝑁
 𝑥′𝑖

𝑁
𝑖=1  

• Translation t = c2 – c1 

• Rotation derived from covariance  
 
𝐴 =  𝑥𝑖 − 𝑐1

𝑇 𝑥′𝑖 − 𝑐2
𝑁
𝑖=1   

 
as 

𝑅 = 𝑉

1
1

sign det 𝑉𝑈𝑇
𝑈𝑇   

 
using A = USVT so actually not a minimal problem (but 
certainly a geometric one) 
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BA Using Minimal Geometric Problems 

• Use 5-point algorithm to get [R t] of the first two 

cameras 

• Keep using P3P for each consecutive camera 

• Keep aligning and concatenating 
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BA Using Minimal Geometric Problems 

• Use 5-point algorithm to get [R t] of the first two 

cameras 

• Keep using P3P for each consecutive camera 

• Keep aligning and concatenating 

• But … 
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BA Using Minimal Geometric Problems 

• Use 5-point algorithm to get [R t] of the first two 

cameras 

• Keep using P3P for each consecutive camera 

• Keep aligning and concatenating 

 

• Use RANSAC to select the points for the MGPs 

• Not enough! Need to do maximum likelihood 

estimation (MLE) 
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Problem Statement (II) 

• Bundle Adjustment 

• We have a set of „cameras“ 

• Each described by a pose [R t], projection K 

• Possibly also lens distortion paramaters l and function 

• We have a set of observed points 

• Each described by its position X 

• We have a set of observations 

• Link between point X, camera C 

• Position of point in the image x 

• Residual to minimize 
 

𝑟 = err 𝑥,  distort l, dehomog 𝑃
𝑅 𝑡

1
𝑋  

a man eats something from his footer 19 



Problem Statement (II) – BA Graph Example 
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• Guildford Cathedral 

• 92 poses 

• 57957 landmarks 



Problem Statement (II) 

• Simultaneous Localization and Mapping–SLAM 

• We have a set of „robot poses“ 

• Each described by a [R t] matrix 

• We may have a set of landmarks 

• Each described by its position l 

• We have a set of observations 

• Odometry observations (links between two poses) 
• Estimated distance travelled D (also a pose itself) 

• Residual to minimize 
 

𝑟 = err
𝑅 𝑡

1
,

𝑅 𝑡
1

 ⊕ 𝐷  

• Landmark observations (pose-landmark links) 
• „Measurement“ of the landmark (e.g. Range-bearing vector) 

• Residual to minimize 
 

𝑟 = err 𝑙,
𝑅 𝑡

1
⊕ 𝑟 𝑏  
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Problem Statement (II) – SLAM Graph Example 

a man eats something from his footer 22 

• Victoria Park (Sydney) 

• 6969 poses 

• 151 landmarks 



Problem Statement (II) 

• In general, inference on graphical models 

• Set of variables V, each contains state vector vl 

• Set of edges E, each a triplet {ik, jk, ok} 

• Where i and j are vectors containing vertex indices 

• Minimize 

 err 𝒗𝒊𝑘 ⊖ 𝒗𝒋𝑘
⊕ 𝒐𝑘  ,

𝐸

𝑘=0

 

where ⊖ and ⊕ are vectorial difference and 

composition operators (e.g. (inverse) matrix 

multiplication), subject to their precedence and 

commutativity 
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Problem Statement (II) 

• In general, inference on graphical models 

• Set of variables V, each contains state vector vl 

• Set of edges E, each a triplet {ik, jk, ok} 

• Where i and j are vectors containing vertex indices 

• Minimize 

 err 𝒗𝒊𝑘 ⊖ 𝒗𝒋𝑘
⊕ 𝒐𝑘

𝐸

𝑘=0

 

• Problem: if there are different kinds of observations, 

how to make different err ·  comparable? 

• Solution: err 𝑣 = 𝑣 Σ𝑘
= 𝑣Σ𝑘𝑣𝑇 , 

where Σ𝑘 is information matrix (inverse covariance) 

for observation k 
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Least Squares 

• Given a set of constraints (observations),  

find a solution that minimizes L2 error 

• For a linear over-determined problem 𝐴𝒙 = 𝒃 

(where the unknown is 𝒙) 

• The error is 𝒓 = 𝒃 − 𝐴𝒙, squared error is* 

𝒓2 = 𝒃 − 𝐴𝒙 𝑇 𝒃 − 𝐴𝒙 = 𝒃𝑇𝒃 − 2𝒙𝑇𝐴𝑇𝒃 + 𝒙𝑇𝐴𝑇𝐴𝒙  

• This error minimizes where the first derivative 

cancels 𝒓2′ = 0 

• Differentiating by 𝒙 gives −𝐴𝑇𝒃 + 𝐴𝑇𝐴 𝒙 = 0 

• Hence 𝒙 = 𝐴𝑇𝐴 −1𝐴𝑇𝒃 = 𝐴+𝒃  

• 𝐴+ is the Moore-Penrose pseudo-inverse 
 

*Note that 𝒙𝑇𝐴𝑇𝒃 is a scalar, thus allowing summation 𝒙𝑇𝐴𝑇𝒃 + 𝒃𝑇𝐴𝒙 = 𝟐𝒙𝑇𝐴𝑇𝒃. 
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Weighted Linear Least Squares 

• Sometimes we want to weight the observations 

• Treated easily, as 

 

𝒙 = 𝐴𝑇𝑊𝐴 −1𝐴𝑇𝑊𝒃 , 

 

where 𝑊 is a diagonal matrix containing the 

weights 

• The weights should be reciprocal variances  

of the estimated variables (inverse covariances 

if estimating vectorial quantities) 

• Can „bake“ weights into 𝐴 by using 𝐴 = 𝐴 𝑊 

since 𝑊 = 𝑊𝑇 (diagonal matrix) 

a man eats something from his footer 26 



Solving Least Squares 

• By solving the normal equation 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 

• The condition number of 𝐴𝑇𝐴 is greater than of 𝐴 

• If 𝐴 was sparse but any of its rows is full, 𝐴𝑇𝐴 is dense 

• By using orthogonal decompositions 

• Notably SVD of 𝐴, 𝐴 = 𝑈𝑆𝑉𝑇 and 𝐴+ = 𝑉𝑆+𝑈∗  

where 𝑈∗ is conjugate transpose (equals 𝑈𝑇 if real) 

• Obtaining 𝑆+ as easy as inverting diagonal entries 

while skipping zeros 

• So solve 𝒙 = 𝑉𝑆+𝑈𝑇𝒃 

• Slow to compute (expensive Householder reduction to 
bidiagonal form, followed by iterative diagonalization) 

• May be more precise, can threshold S to reduce noise 

• Sometimes, there is an additional constraint 𝒙 = 1, 

then only use the smallest singular value, zero the rest 
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Least Squares Demo (Matlab) 

O = [0 1; 1 3; 2 3; 3 7]; 

% observations of some 1D function 

% O(:,1) are the arguments, a 

% O(:,2) are the desired fit values, b 

  

% we are trying to estimate b = p + qa + ra^2 

% where x = [p q r] is our unknown 

  

m = length(O); 

A = [ones(m, 1), O(:, 1), O(:, 1).^2]; 

% stack the equations (1p + aq + a^2r) 

  

x = (A' * A) \ A' * O(:,2) 

% solve normal equation (backslash = solve) 

  

xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 

yy = x(1) + x(2) * xx + x(3) * (xx.^2); 

% evaluate the estimated model 

  

plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 

hold on 

plot(xx, yy, '-r') % plot the fitted curve 

hold off 
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Least Squares Demo (Matlab) 

O = [0 1; 1 3; 2 3; 3 7]; 

% observations of some 1D function 

% O(:,1) are the arguments, a 

% O(:,2) are the desired fit values, b 

  

% we are trying to estimate b = p + qa + ra^2 

% where x = [p q r] is our unknown 

 

m = length(O); 

A = [ones(m, 1), O(:, 1), O(:, 1).^2]; 

% stack the equations (1p + aq + a^2r) 

  

[U,S,V] = svd(A); % take SVD of A 

Splus = zeros(size(S')); % S' may be rectangular 

n = size(A, 2); % length of the diagonal 

Splus(1:n, 1:n) = diag(1 ./ diag(S))' % recip. diag. 

x = V * Splus * U' * O(:,2) 

% solve using SVD 
 

xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 

yy = x(1) + x(2) * xx + x(3) * (xx.^2); 

% evaluate the estimated model 

 
plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 

hold on 

plot(xx, yy, '-r') % plot the fitted curve 
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Weighted Least Squares Demo (Matlab) 

O = [0 1; 1 3; 2 3; 3 7]; 

% observations of some 1D function 

% O(:,1) are the arguments, a 

% O(:,2) are the desired fit values, b 

  

W = diag([10 1 10 10]) 

% weights for the observations 

  

m = length(O); 

A = [ones(m, 1), O(:, 1), O(:, 1).^2]; 

% stack the equations (1p + aq + a^2r) 

  

x = (A' * W * A) \ A' * W * O(:, 2) 

% solve normal equation (backslash = solve) 

  

xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 

yy = x(1) + x(2) * xx + x(3) * (xx.^2); 

% evaluate the estimated model 

  

plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 

hold on 

plot(xx, yy, '-r') % plot the fitted curve 

hold off 
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Nonlinear Least Squares 

• The estimation for bundle adjustment is highly 

nonlinear (rotations, projections, …) 

• Formally, instead of linear 𝒓 = 𝒃 − 𝐴𝒙 we now 

have 𝒓 = 𝒃 − ℎ 𝒙  with nonlinear function ℎ ∙  

• To minimize s = 𝒓𝑇𝒓, 

we again set 
𝜕𝑠

𝜕𝒙
= 2  𝒓𝑖

𝜕𝒓𝑖

𝜕𝒙
= 0 

• Instead of directly getting 𝒙, 

at iteration 𝑘, we improve 𝒙𝑘+1 = 𝒙𝑘 + ∆𝒙 

• To solve this, we shall 

• Linearize the problem using Taylor expansion 

• Assume Gaussian noise to be able to do that 
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Nonlinear Least Squares 

• We call 𝒙𝑘  our linearization point 

• Approximate 

ℎ 𝒙 ≈ ℎ 𝒙𝑘 +
𝜕ℎ 𝒙𝑘

𝜕𝒙
𝒙 − 𝒙𝑘 = ℎ 𝒙𝑘 + 𝑱∆𝒙  

• The Jacobian 𝑱 changes with the linearization 

• At step 𝑘, we solve linearized problem 
∆𝒃 = 𝒃 − ℎ 𝒙𝑘  , 

𝒓 = 𝒃 − ℎ 𝒙 = 𝒃 − ℎ 𝒙𝑘 + ℎ 𝒙𝑘 − ℎ 𝒙  , 

𝒓 ≈ ∆𝒃 − 𝑱∆𝒙 and that is a linear model! 

• Solve familiar 𝑱𝑻𝑱∆𝒙 = 𝑱𝑻∆𝒃  

• Note that also using Hessian 𝑯 =
𝜕ℎ 𝒙𝑘

𝜕𝒙𝜕𝒙𝑇  would 

converge faster (this is 1st order method) 
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Nonlinear Least Squares 

• Gauss-Newton algorithm 

Take initial guess of 𝒙0  , set 𝑘 = 0 

Repeat until end of time 

Linearize the system 𝑱 =
𝜕ℎ 𝒙𝑘

𝜕𝒙
 

Calculate residual ∆𝒃 = 𝒃 ⊖ ℎ 𝒙𝑘  note the vectorial op 

Solve 𝑱𝑻𝑱∆𝒙 = 𝑱𝑻∆𝒃 

If ∆𝒙 < 𝑡 then 

stop 

𝒙𝑘+1 = 𝒙𝑘 ⊕ ∆𝒙    note the vectorial op 

𝑘 = 𝑘 + 1  

• Unlike linear LS, we need initial guess 𝒙0  

• Sometimes, LLS can be used to estimate it 

• For BA, there are MGPs to take care of that 
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Nonlinear Least Squares Demo (Matlab) 

O = [0 1; 1 3; 2 3; 3 7]; % we are trying to estimate b = p + pqa + pqra^2 
% observations of some 1D function % where x = [p q r] is our unknown 
% O is vector of pairs arg. a and desired fit b % h(x) = p + pqa + pqra^2, J = dh(x) / dx = [1+qa+qra^2, pa+pra^2, qa^2] 
 % we use this parameterization to make it nonlinear (would work with linear 
x = [1 -1 -.1]'; % too but would be able to optimize in a single step, which would be boring) 

% guess 0x (deliberately a bad guess, to take a few steps) 
 
plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 
hold on 
xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 
for i = 1:10 
    yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 
    plot(xx, yy, '-b') % plot the initial guess 
    % evaluate the initial guess 

 
    J = [1 + x(2) * O(:, 1) + x(2) * x(3) * O(:, 1).^2, ... 
        x(1) * O(:, 1) + x(1) * x(3) * O(:, 1).^2, x(1) * x(2) * O(:, 1).^2]; 
    % calculate the Jacobian 
 
    db = O(:,2) - x(1) - O(:,1) * x(1) * x(2) - O(:,1).^2 * x(1) * x(2) * x(3); 
    % calculate current error vector 
  
    dx = (J' * J) \ J' * db; norm_dx = norm(dx) 

    % solve  
 
    if(norm_dx < 1e-6) % see if we optimize 
        break 
    end 
    x = x + dx % increment 
end 
 
yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 

plot(xx, yy, '-r') % plot the final in red 
hold off 
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INTERMEZZO I 

And now for something completely different … 
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Getting Derivatives 

• Can readily use Matlab’s symbolic toolbox 

• Can use a cookbook (e.g. [J. Blanco, 2010,  
A tutorial on se(3) transformation parameterizations 

and on-manifold optimization, (TR)].) 

• Derivatives know nothing about vectorial, so 
𝜕𝑓 𝒙

𝜕𝒙
≔ 

𝜕𝑓 𝒙 ⊕ 𝜺

𝜕𝜺
 

• When dealing with rotations, commutability 

becomes an issue, 𝒙𝑘+1 = 𝒙𝑘 ⊕ ∆𝒙  must match 𝑱 
 

„If rotations and translations commuted, 

we could simply do all our rotations in the 

morning, before leaving home.“ 
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Getting Derivatives 

• Worked example – pose SLAM 

• We have two poses, 𝑅1 𝒕1  and 𝑅2 𝒕2  

• We want to avoid optimizing 4×4 matrices 

• Internally, they are optimized as ℝ6 [axis-angle 𝒕] 

• That gives us v 𝑅 𝒕 = aa 𝑅  𝒕  and m 𝒓 𝒕 = 𝑅 𝒕  

• We have ⊕ 𝒓1 𝒕1 , 𝒓2 𝒕2 = v m 𝒓1 𝒕1 ∙ m 𝒓2 𝒕2  

and ⊖ 𝒓1 𝒕1 , 𝒓2 𝒕2 = v m 𝒓1 𝒕1
−1

∙ m 𝒓2 𝒕2  

• For NLS, we need 𝑱 =
𝜕ℎ 𝒙𝑘

𝜕𝒙
=  

𝜕 𝒙𝒊𝑘
 ⊖ 𝒙𝒋𝑘

𝜕 𝒙𝒊𝑘
 𝒙𝒋𝑘

𝐸
𝑘=1  

• Also, error ∆𝒃 =  𝒐𝑘 ⊖ 𝒙𝒊𝑘 ⊖ 𝒙𝒋𝑘

𝐸
𝑘=1  

• Then update 𝒙 𝑖 = ∆𝒙𝑖 ⊕ 𝒙𝑖 for each variable 𝒙𝑖 ∈ 𝑉 

• Recall that this is on graph 𝑉, 𝐸 , 𝒊𝑘 , 𝒋𝑘 , 𝒐𝑘 ∈ 𝐸 
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Chain rule 

• A simple rule that allows decomposition of 

derivatives 

 

𝑓 𝑔 𝑥
′
= 𝑓′ 𝑔 𝑥 ∙ 𝑔′ 𝑥   

 

so instead of calculating long 𝑓 𝑔 𝑥
′
 , we 

calculate much shorter 𝑓′ 𝑦  and 𝑔′ 𝑥  and 

multiply them numerically when evaluating 𝑱 
 

• We typically calculate derivatives of ⊕, ⊖, v ∙  

and m ∙  and chain rule the rest 
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SLAM Derivatives Continued 

• Lets try to get a Jacobian of v 𝑅 𝒕 = aa 𝑅  𝒕  
 

syms r00 r01 r02 r10 r11 r12 r20 r21 r22 t0 t1 t2 real 

R = [r00 r01 r02; r10 r11 r12; r20 r21 r22] 

t = [t0 t1 t2]' 

% we have a rotation matrix and a translation vector 

  

qw = sqrt(1 + r00 + r11 + r22) / 2; 

qx = (r21 - r12) / (4 * qw); 

qy = (r02 - r20) / (4 * qw); 

qz = (r10 - r01) / (4 * qw); 

% simplified matrix to quaternion (would need several branches for numerical stability) 

  

qnorm = simplify(sqrt([qx qy qz] * [qx qy qz]')); 

halfangle = asin(qnorm); 

% get half of the rotation angle 

  

ax = simplify(qx / qnorm * 2 * halfangle); 

ay = simplify(qy / qnorm * 2 * halfangle); 

az = simplify(qz / qnorm * 2 * halfangle); 

% get the rotation as axis-angle 

  

vec = [ax ay az t0 t1 t2]' 

Rtvec = [r00 r01 r02 r10 r11 r12 r20 r21 r22 t0 t1 t2]'; 

J = simplify(jacobian(vec, Rtvec)); 

% let matlab calculate the derivatives 

 

ccode(J) 

% export to C 
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The output of ccode() I 
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SLAM Derivatives Continued 

• Some more tricks 
 

syms qnorm_ qx_ qy_ qz_ qw_ ax_ ay_ az_ real 

J = subs(J, ax, ax_) 

J = subs(J, ay, ay_) 

J = subs(J, az, az_) 

J = subs(J, qx, qx_) 

J = subs(J, qy, qy_) 

J = subs(J, qz, qz_) 

J = subs(J, qw, qw_) 

J = subs(J, qnorm, qnorm_) 

% try substituting common subexpressions to tame the beast (don’t simplify J in the previous slide!) 

  

ccode(J) 

% export to C 
 

• Still generates 34 kB of C code 

• Gotcha – simple() and simplify() are different 

• Lesson learned – don’t use [R t], use 

Quaternions instead! 
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The output of ccode() II 
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SLAM Derivatives Continued 

• Better yet 
 

quat_t = [qw qx qy qz t0 t1 t2] 

J0 = jacobian(quat_t, Rtvec); 

% 

syms ax_ ay_ az_ qx_ qy_ qz_ qw_ real 

%qnorm = (sqrt([qx qy qz] * [qx qy qz]')); % MATLAB trolls you if U no careful … 

qnorm = (sqrt(qx^2 + qy^2 + qz^2)); 

halfangle_ = asin(qnorm_); 

ax_ = (qx_ / qnorm_ * 2 * halfangle_); 

ay_ = (qy_ / qnorm_ * 2 * halfangle_); 

az_ = (qz_ / qnorm_ * 2 * halfangle_); 

vec_ = [ax_ ay_ az_ t0 t1 t2]' 

quat_t_ = [qw_ qx_ qy_ qz_ t0 t1 t2] 

J1 = jacobian(vec_, quat_t_); 

% calculate the jacobians separately (note how J1 is on separate variables) 

  

% chain rule as: 
%  f(   g(R))' =  f'(   g(R)) *    g'(R) 
% aa(quat(R))' = aa'(quat(R)) * quat'(R) 
%            J =           J1 *       J0 
  

J1 = subs(J1, qx_, qx); J1 = subs(J1, qy_, qy); J1 = subs(J1, qz_, qz); J1 = subs(J1, qw_, qw) 

% substitute the quaternion to J1 (in practice, we would substitute *values* rather than *formulas*) 

  

error = simplify(J - J1 * J0) % verify, this prints a matrix of zeros 
 

• Generates 1.94 and 2.29 kB of C for J0 and J1 
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The output of ccode() III 

T[0][0] = -(r21-r12)/sqrt(pow(1.0+r00+r11+r22,3.0))/4.0;      T[0][1] = 0.0;      T[0][2] = 0.0;      T[0][3] = 0.0;      T[0][4] = -(r21-
r12)/sqrt(pow(1.0+r00+r11+r22,3.0))/4.0;      T[0][5] = -1/(sqrt(1.0+r00+r11+r22))/2.0;      T[0][6] = 0.0;      T[0][7] = 
1/(sqrt(1.0+r00+r11+r22))/2.0;      T[0][8] = -(r21-r12)/sqrt(pow(1.0+r00+r11+r22,3.0))/4.0;      T[0][9] = 0.0;      T[0][10] = 0.0;      T[0][11] 
= 0.0;      T[1][0] = -(r02-r20)/sqrt(pow(1.0+r00+r11+r22,3.0))/4.0;      T[1][1] = 0.0;      T[1][2] = 1/(sqrt(1.0+r00+r11+r22))/2.0;      T[1][3] 
= 0.0;      T[1][4] = -(r02-r20)/sqrt(pow(1.0+r00+r11+r22,3.0))/4.0;      T[1][5] = 0.0;      T[1][6] = -1/(sqrt(1.0+r00+r11+r22))/2.0;      
T[1][7] = 0.0;      T[1][8] = -(r02-r20)/sqrt(pow(1.0+r00+r11+r22,3.0))/4.0;      T[1][9] = 0.0;      T[1][10] = 0.0;      T[1][11] = 0.0;      T[2][0] 
= -(r10-r01)/sqrt(pow(1.0+r00+r11+r22,3.0))/4.0;      T[2][1] = -1/(sqrt(1.0+r00+r11+r22))/2.0;      T[2][2] = 0.0;      T[2][3] = 
1/(sqrt(1.0+r00+r11+r22))/2.0;      T[2][4] = -(r10-r01)/sqrt(pow(1.0+r00+r11+r22,3.0))/4.0;      T[2][5] = 0.0;      T[2][6] = 0.0;      T[2][7] = 
0.0;      T[2][8] = -(r10-r01)/sqrt(pow(1.0+r00+r11+r22,3.0))/4.0;      T[2][9] = 0.0;      T[2][10] = 0.0;      T[2][11] = 0.0;      T[3][0] = 0.0;      
T[3][1] = 0.0;      T[3][2] = 0.0;      T[3][3] = 0.0;      T[3][4] = 0.0;      T[3][5] = 0.0;      T[3][6] = 0.0;      T[3][7] = 0.0;      T[3][8] = 0.0;      
T[3][9] = 1.0;      T[3][10] = 0.0;      T[3][11] = 0.0;      T[4][0] = 0.0;      T[4][1] = 0.0;      T[4][2] = 0.0;      T[4][3] = 0.0;      T[4][4] = 0.0;      
T[4][5] = 0.0;      T[4][6] = 0.0;      T[4][7] = 0.0;      T[4][8] = 0.0;      T[4][9] = 0.0;      T[4][10] = 1.0;      T[4][11] = 0.0;      T[5][0] = 0.0;      
T[5][1] = 0.0;      T[5][2] = 0.0;      T[5][3] = 0.0;      T[5][4] = 0.0;      T[5][5] = 0.0;      T[5][6] = 0.0;      T[5][7] = 0.0;      T[5][8] = 0.0;      
T[5][9] = 0.0;      T[5][10] = 0.0;      T[5][11] = 1.0; 
 
T[0][0] = 2.0/sqrt(qx_*qx_+qy_*qy_+qz_*qz_)*asin(sqrt(qx_*qx_+qy_*qy_+qz_*qz_))-
2.0*qx_*qx_/sqrt(pow(qx_*qx_+qy_*qy_+qz_*qz_,3.0))*asin(sqrt(qx_*qx_+qy_*qy_+qz_*qz_))+2.0*qx_*qx_/(qx_*qx_+qy_*qy_+qz_*
qz_)/sqrt(1.0-qx_*qx_-qy_*qy_-qz_~*qz_);      T[0][1] = -
2.0*qx_/sqrt(pow(qx_*qx_+qy_*qy_+qz_*qz_,3.0))*asin(sqrt(qx_*qx_~+qy_*qy_+qz_*qz_))*qy_+2.0*qx_/(qx_*qx_+qy_*qy_+qz_*qz
_)*qy_/sqrt(1.0-qx_*qx_~-qy_*qy_-qz_*qz_);      T[0][2] = -
2.0*qx_/sqrt(pow(qx_*qx_+qy_*qy_+qz_*qz_,3.0))*asin(sqrt(qx_*qx_~+qy_*qy_+qz_*qz_))*qz_+2.0*qx_/(qx_*qx_+qy_*qy_+qz_*qz
_)*qz_/sqrt(1.0-qx_*qx_~-qy_*qy_-qz_*qz_);      T[0][3] = 0.0;      T[0][4] = 0.0;      T[0][5] = 0.0;      T[1][0] = -
2.0*qx_/sqrt(pow(qx_*qx_+qy_*qy_+qz_*qz_,3.0))*asin(sqrt(qx_*qx_~+qy_*qy_+qz_*qz_))*qy_+2.0*qx_/(qx_*qx_+qy_*qy_+qz_*qz
_)*qy_/sqrt(1.0-qx_*qx_~-qy_*qy_-qz_*qz_);      T[1][1] = 2.0/sqrt(qx_*qx_+qy_*qy_+qz_*qz_)*asin(sqrt(qx_*qx_+qy_*qy_+qz_*qz_))-
2.0*qy_*qy_/sqrt(pow(qx_*qx_+qy_*qy_+qz_*qz_,3.0))*asin(sqrt(qx_*qx_+qy_*qy_+qz_*qz_))+2.0*qy_*qy_/(qx_*qx_+qy_*qy_+qz_
*qz_)/sqrt(1.0-qx_*qx_-qy_*qy_-qz_~*qz_);      T[1][2] = -
2.0*qy_/sqrt(pow(qx_*qx_+qy_*qy_+qz_*qz_,3.0))*asin(sqrt(qx_*qx_~+qy_*qy_+qz_*qz_))*qz_+2.0*qy_/(qx_*qx_+qy_*qy_+qz_*qz
_)*qz_/sqrt(1.0-qx_*qx_~-qy_*qy_-qz_*qz_);      T[1][3] = 0.0;      T[1][4] = 0.0;      T[1][5] = 0.0;      T[2][0] = -
2.0*qx_/sqrt(pow(qx_*qx_+qy_*qy_+qz_*qz_,3.0))*asin(sqrt(qx_*qx_~+qy_*qy_+qz_*qz_))*qz_+2.0*qx_/(qx_*qx_+qy_*qy_+qz_*qz
_)*qz_/sqrt(1.0-qx_*qx_~-qy_*qy_-qz_*qz_);      T[2][1] = -
2.0*qy_/sqrt(pow(qx_*qx_+qy_*qy_+qz_*qz_,3.0))*asin(sqrt(qx_*qx_~+qy_*qy_+qz_*qz_))*qz_+2.0*qy_/(qx_*qx_+qy_*qy_+qz_*qz
_)*qz_/sqrt(1.0-qx_*qx_~-qy_*qy_-qz_*qz_);      T[2][2] = 2.0/sqrt(qx_*qx_+qy_*qy_+qz_*qz_)*asin(sqrt(qx_*qx_+qy_*qy_+qz_*qz_))-
2.0*qz_*qz_/sqrt(pow(qx_*qx_+qy_*qy_+qz_*qz_,3.0))*asin(sqrt(qx_*qx_+qy_*qy_+qz_*qz_))+2.0*qz_*qz_/(qx_*qx_+qy_*qy_+qz_*
qz_)/sqrt(1.0-qx_*qx_-qy_*qy_-qz_~*qz_);      T[2][3] = 0.0;      T[2][4] = 0.0;      T[2][5] = 0.0;      T[3][0] = 0.0;      T[3][1] = 0.0;      T[3][2] 
= 0.0;      T[3][3] = 1.0;      T[3][4] = 0.0;      T[3][5] = 0.0;      T[4][0] = 0.0;      T[4][1] = 0.0;      T[4][2] = 0.0;      T[4][3] = 0.0;      T[4][4] = 
1.0;      T[4][5] = 0.0;      T[5][0] = 0.0;      T[5][1] = 0.0;      T[5][2] = 0.0;      T[5][3] = 0.0;      T[5][4] = 0.0;      T[5][5] = 1.0; 

a man eats something from his footer 44 

4 kB 



Matlab - Eliminating Common Subexpressions 

syms temp0 temp1 temp2 temp3 real 

subexpr(J0, 'temp0') 

>> temp0 =  

>>     1+r00+r11+r22 

>> J0 = 

>>     [ -1/4*(r21-r12)/temp0^(3/2),                          0, … 

subexpr(ans, 'temp1') 

subexpr(ans, 'temp2') 

… 

J0_ = ans; 

ccode(temp0) 

ccode(temp1) 

ccode(temp2) 

ccode(J0_) 
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The output of ccode() IV 

T.setZero();    temp5 = 1.0+r00+r11+r22;     temp6 = sqrt(temp5);   temp7 = pow(temp5, 3.0/2); 

T[0][0] = -(r21-r12)/temp7/4.0;  T[0][4] = -(r21-r12)/temp7/4.0;    T[0][5] = -0.5/temp6; 

T[0][7] = 0.5/temp6;    T[0][8] = -(r21-r12)/temp7/4.0;  T[1][0] = -(r02-r20)/temp7/4.0; 

T[1][2] = 0.5/temp6;     T[1][4] = -(r02-r20)/temp7/4.0;    T[1][6] = -0.5/temp6;  

T[1][8] = -(r02-r20)/temp7/4.0;    T[2][0] = -(r10-r01)/temp7/4.0;      T[2][1] = -0.5/temp6; 

T[2][3] = 0.5/temp6;      T[2][4] = -(r10-r01)/temp7/4.0;    T[2][8] = -(r10-r01)/temp7/4.0; 

T[3][9] = 1.0;      T[4][10] = 1.0;      T[5][11] = 1.0; 
 

T.setZero();    temp0 = qx_*qx_+qy_*qy_+qz_*qz;    temp1 = sqrt(temp0);     

temp2 = asin(temp1);    temp3 = sqrt(1.0-temp0);    temp4 = sqrt(pow(temp0,3.0))*temp2; 

T[0][0] = 2.0/temp1*temp2-2.0*qx_*qx_/temp4+2.0*qx_*qx_/(temp0)/temp3;  

T[0][1] = -2.0*qx_/temp4*qy_+2.0*qx_/(temp0)*qy_/temp3;  

T[0][2] = -2.0*qx_/temp4*qz_+2.0*qx_/(temp0)*qz_/temp3;  

T[1][0] = -2.0*qx_/temp4*qy_+2.0*qx_/(temp0)*qy_/temp3;  

T[1][1] = 2.0/temp1*temp2-2.0*qy_*qy_/temp4+2.0*qy_*qy_/(temp0)/temp3; 

T[1][2] = -2.0*qy_/temp4*qz_+2.0*qy_/(temp0)*qz_/temp3; 

T[2][0] = -2.0*qx_/temp4*qz_+2.0*qx_/(temp0)*qz_/temp3;  

T[2][1] = -2.0*qy_/temp4*qz_+2.0*qy_/(temp0)*qz_/temp3; 

T[2][2] = 2.0/temp1*temp2-2.0*qz_*qz_/temp4+2.0*qz_*qz_/(temp0)/temp3; 

T[3][3] = 1.0;      T[4][4] = 1.0;      T[5][5] = 1.0; 
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Numerical Differentiation 

• Much easier for fast prototyping 

• Typically not horribly imprecise but can be slow 
 

Vector6d x1, x2; // the two variables 

 

Vector6d expectation = x1 ⊖ x2; // the function we’re differentiating 

 

Matrix6d J1; // derivative w.r.t. x1 

for(int i = 0; i < 6; ++ i) { 

 Vector6d eps; 

 eps.setZero(); eps(i) = 1e-9; 

 Vector6d shift1 = eps ⊕ x1; // apply infinitesimal shift (ordering!) 

 Vector6d value = shift1 ⊖ x2; // see how that changes the output 

 J1.col(i) = (value - expectation) * 1e+9; // note cwise op 

} 

// do the same for x2 
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Dual Numbers 

• Also good for prototyping but quite slow 

• A bit like complex numbers, with special 

semantics (while 𝑖2 = −1, we use 𝑒2 = 0)  

• Consider 𝑓 𝑥 = 𝑥2, inject 𝑦 = 𝑥 + 𝑒 

• Evaluate using our “complex” arithmetics 

𝑓 𝑦 = 𝑥 + 𝑒 2 = 𝑥2 + 2𝑥𝑒 + 𝑒2 = 𝑥2 + 2𝑥𝑒  

 

• For functions of multiple arguments, we need 

to put 𝑒 in each argument separately and re-

evaluate several times 

• Rules for multiplication, division, 

transcendentals (can derive from Taylor series) 

 a man eats something from his footer 48 

value derivative 



Lie Group Basics 

• Groups on differentiable manifolds 

• Lie group SE(3) and associated algebra 𝔰𝔢(3) 

• SE(3) maps to Euclidean space 𝔼3 ([R t] are in it) 

• 𝔰𝔢(3) is the tangent space of real  

skew-symmetric 4×4 matrices 

• Exponential map goes from 𝔰𝔢(3) to SE(3) 

• Logarithmic map goes from SE(3) to 𝔰𝔢(3) 

• Vectorial operator* [x]v packs skew-sym to vec 

• Cross operator [x]× goes back to skew-sym 

• Lie bracket [x, y] = xy – yx (where x, y ∈ 𝔰𝔢(3)) 
 

*several different notations exist 
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Lie Group Basics 

• Let’s have skew symmetric 𝔰𝔬(3) matrix 𝐴 

𝒗 = 𝑎 𝑏 𝑐 , 𝒗 × = 𝐴 =
0 −𝑐 𝑏
𝑐 0 −𝑎

−𝑏 𝑎 0
 

• Now, thinking about matrix exponent 

𝑅 = 𝑒𝐴 = 𝐼 +  
𝐴𝑖

𝑖!𝑖=1  with 𝐴0 = 𝐼 

• So exponential map of 𝔰𝔬(3) yields R, which is 

orthogonal (i.e. rotation matrix, in SO(3)) 

• There’s also a logarithm of matrix 
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SO(3) Exponential Map 

• Following 

𝒗 = 𝑎 𝑏 𝑐 , 𝒗 × = 𝐴 =
0 −𝑐 𝑏
𝑐 0 −𝑎

−𝑏 𝑎 0
  

 

𝐵 = 𝒗𝒗𝑇 = 𝐴2 =
𝑎2 𝑎𝑏 𝑎𝑐
𝑎𝑏 𝑏2 𝑏𝑐
𝑎𝑐 𝑏𝑐 𝑐2

  

 

𝑒𝐴 = cos 𝜃 𝐼 +
sin 𝜃

𝜃
𝐴 +

1−cos 𝜃

𝜃2 𝐵  

 

• Seems familiar? :) 
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Lie Group Basics 

• Going back to derivatives, we can calculate 

derivatives of exp, log, (inverse) compose, just 

like we did for ⊕, ⊖, v ∙  and m ∙  

• Much of that has nice closed form 

• As for least squares, we choose (vectorial) 

𝔰𝔢(3) or 𝔰𝔦𝔪(3) as the internal representation 

 

 

 

• See Tom Drummond’s TooN library for gritty 

details and code 

(https://www.edwardrosten.com/cvd/toon/html-user/) 
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BACK TO BUNDLING 

And now … 
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Handling Severe Nonlinearity 

• Gauss-Newton only computes step from local 

gradient, never looks back 
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Rosenbrock 

Chebyshev 

This would happen more with gradient descent. This is illustrative. 



Handling Severe Nonlinearity 

• Several algorithms that address this 

• Levenberg-Marquardt 

• Recall ordinary NLS 

𝑱𝑻𝑱∆𝒙 = 𝑱𝑻∆𝒃 

• We’re more or less doing 𝑗2𝑥 = 𝑗𝑏 ~ 𝑗𝑥 = 𝑏 

• We can control step size by magnitude of 𝑗 

• Levenberg-Marquardt NLS 

𝑱𝑻𝑱 + 𝛼𝑲 ∆𝒙 = 𝑱𝑻∆𝒃 

with common choices 𝑲 = 𝑰 or 𝑲 = diag 𝑱𝑻𝑱  

• Changing the value of 𝛼 inversely 

proportionally controls step size and direction 

choosing between GN and steepest descent 
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Gauss & Newton Descending a Really Steep Gradient, Holding Hands 

• GN typically 

converges faster 

• GD less prone 

to get stuck but 

tends to zigzag 

a lot 

a man eats something from his footer 56 

GN 

GD 



Gauss & Newton Descending a Really Steep Gradient, Holding Hands 

• GN typically 

converges faster 

• GD less prone 

to get stuck but 

tends to zigzag 

a lot 
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Effects of Levenberg-Marquardt Damping 
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O = [0 1; 1 3; 2 3; 3 7]; % we are trying to estimate b = p + pqa + pqra^2 
% observations of some 1D function % where x = [p q r] is our unknown 
% O is vector of pairs arg. a and desired fit b % h(x) = p + pqa + pqra^2, J = dh(x) / dx = [1+qa+qra^2, pa+pra^2, qa^2] 
 % we use this parameterization to make it nonlinear (would work with linear 
x = [1 -1 -.1]'; % too but would be able to optimize in a single step, which would be boring) 

% guess 0x (deliberately a bad guess, to take a few steps) 
 
plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 
hold on 
xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 
for i = 1:100 
    yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 
    plot(xx, yy, '-b') % plot the initial guess 
    % evaluate the initial guess 

 
    J = [1 + x(2) * O(:, 1) + x(2) * x(3) * O(:, 1).^2, ... 
        x(1) * O(:, 1) + x(1) * x(3) * O(:, 1).^2, x(1) * x(2) * O(:, 1).^2]; 
    % calculate the Jacobian 
 
    db = O(:,2) - x(1) - O(:,1) * x(1) * x(2) - O(:,1).^2 * x(1) * x(2) * x(3); 
    % calculate current error vector 
  
    dx = (J' * J + 0 * eye(size(J, 2))) \ J' * db; norm_dx = norm(dx) 

    % solve  
 
    if(norm_dx < 1e-6) % see if we optimize 
        break 
    end 
    x = x + dx % increment 
end 
 
yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 

plot(xx, yy, '-r') % plot the final in red 
hold off 
 



Effects of Levenberg-Marquardt Damping 
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O = [0 1; 1 3; 2 3; 3 7]; % we are trying to estimate b = p + pqa + pqra^2 
% observations of some 1D function % where x = [p q r] is our unknown 
% O is vector of pairs arg. a and desired fit b % h(x) = p + pqa + pqra^2, J = dh(x) / dx = [1+qa+qra^2, pa+pra^2, qa^2] 
 % we use this parameterization to make it nonlinear (would work with linear 
x = [1 -1 -.1]'; % too but would be able to optimize in a single step, which would be boring) 

% guess 0x (deliberately a bad guess, to take a few steps) 
 
plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 
hold on 
xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 
for i = 1:100 
    yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 
    plot(xx, yy, '-b') % plot the initial guess 
    % evaluate the initial guess 

 
    J = [1 + x(2) * O(:, 1) + x(2) * x(3) * O(:, 1).^2, ... 
        x(1) * O(:, 1) + x(1) * x(3) * O(:, 1).^2, x(1) * x(2) * O(:, 1).^2]; 
    % calculate the Jacobian 
 
    db = O(:,2) - x(1) - O(:,1) * x(1) * x(2) - O(:,1).^2 * x(1) * x(2) * x(3); 
    % calculate current error vector 
  
    dx = (J' * J + 1 * eye(size(J, 2))) \ J' * db; norm_dx = norm(dx) 

    % solve  
 
    if(norm_dx < 1e-6) % see if we optimize 
        break 
    end 
    x = x + dx % increment 
end 
 
yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 

plot(xx, yy, '-r') % plot the final in red 
hold off 
 



Effects of Levenberg-Marquardt Damping 
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O = [0 1; 1 3; 2 3; 3 7]; % we are trying to estimate b = p + pqa + pqra^2 
% observations of some 1D function % where x = [p q r] is our unknown 
% O is vector of pairs arg. a and desired fit b % h(x) = p + pqa + pqra^2, J = dh(x) / dx = [1+qa+qra^2, pa+pra^2, qa^2] 
 % we use this parameterization to make it nonlinear (would work with linear 
x = [1 -1 -.1]'; % too but would be able to optimize in a single step, which would be boring) 

% guess 0x (deliberately a bad guess, to take a few steps) 
 
plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 
hold on 
xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 
for i = 1:100 
    yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 
    plot(xx, yy, '-b') % plot the initial guess 
    % evaluate the initial guess 

 
    J = [1 + x(2) * O(:, 1) + x(2) * x(3) * O(:, 1).^2, ... 
        x(1) * O(:, 1) + x(1) * x(3) * O(:, 1).^2, x(1) * x(2) * O(:, 1).^2]; 
    % calculate the Jacobian 
 
    db = O(:,2) - x(1) - O(:,1) * x(1) * x(2) - O(:,1).^2 * x(1) * x(2) * x(3); 
    % calculate current error vector 
  
    dx = (J' * J + 10 * eye(size(J, 2))) \ J' * db; norm_dx = norm(dx) 

    % solve  
 
    if(norm_dx < 1e-6) % see if we optimize 
        break 
    end 
    x = x + dx % increment 
end 
 
yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 

plot(xx, yy, '-r') % plot the final in red 
hold off 
 



Effects of Levenberg-Marquardt Damping 
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O = [0 1; 1 3; 2 3; 3 7]; % we are trying to estimate b = p + pqa + pqra^2 
% observations of some 1D function % where x = [p q r] is our unknown 
% O is vector of pairs arg. a and desired fit b % h(x) = p + pqa + pqra^2, J = dh(x) / dx = [1+qa+qra^2, pa+pra^2, qa^2] 
 % we use this parameterization to make it nonlinear (would work with linear 
x = [1 -1 -.1]'; % too but would be able to optimize in a single step, which would be boring) 

% guess 0x (deliberately a bad guess, to take a few steps) 
 
plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 
hold on 
xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 
for i = 1:100 
    yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 
    plot(xx, yy, '-b') % plot the initial guess 
    % evaluate the initial guess 

 
    J = [1 + x(2) * O(:, 1) + x(2) * x(3) * O(:, 1).^2, ... 
        x(1) * O(:, 1) + x(1) * x(3) * O(:, 1).^2, x(1) * x(2) * O(:, 1).^2]; 
    % calculate the Jacobian 
 
    db = O(:,2) - x(1) - O(:,1) * x(1) * x(2) - O(:,1).^2 * x(1) * x(2) * x(3); 
    % calculate current error vector 
  
    dx = (J' * J + 100 * eye(size(J, 2))) \ J' * db; norm_dx = norm(dx) 

    % solve  
 
    if(norm_dx < 1e-6) % see if we optimize 
        break 
    end 
    x = x + dx % increment 
end 
 
yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 

plot(xx, yy, '-r') % plot the final in red 
hold off 
 



Effects of Levenberg-Marquardt Damping 
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O = [0 1; 1 3; 2 3; 3 7]; % we are trying to estimate b = p + pqa + pqra^2 
% observations of some 1D function % where x = [p q r] is our unknown 
% O is vector of pairs arg. a and desired fit b % h(x) = p + pqa + pqra^2, J = dh(x) / dx = [1+qa+qra^2, pa+pra^2, qa^2] 
 % we use this parameterization to make it nonlinear (would work with linear 
x = [1 -1 -.1]'; % too but would be able to optimize in a single step, which would be boring) 

% guess 0x (deliberately a bad guess, to take a few steps) 
 
plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 
hold on 
xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 
for i = 1:100 
    yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 
    plot(xx, yy, '-b') % plot the initial guess 
    % evaluate the initial guess 

 
    J = [1 + x(2) * O(:, 1) + x(2) * x(3) * O(:, 1).^2, ... 
        x(1) * O(:, 1) + x(1) * x(3) * O(:, 1).^2, x(1) * x(2) * O(:, 1).^2]; 
    % calculate the Jacobian 
 
    db = O(:,2) - x(1) - O(:,1) * x(1) * x(2) - O(:,1).^2 * x(1) * x(2) * x(3); 
    % calculate current error vector 
  
    dx = (J' * J + 1000 * eye(size(J, 2))) \ J' * db; norm_dx = norm(dx) 

    % solve  
 
    if(norm_dx < 1e-6) % see if we optimize 
        break 
    end 
    x = x + dx % increment 
end 
 
yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 

plot(xx, yy, '-r') % plot the final in red 
hold off 
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O = [0 1; 1 3; 2 3; 3 7]; % we are trying to estimate b = p + pqa + pqra^2 
% observations of some 1D function % where x = [p q r] is our unknown 
% O is vector of pairs arg. a and desired fit b % h(x) = p + pqa + pqra^2, J = dh(x) / dx = [1+qa+qra^2, pa+pra^2, qa^2] 
 % we use this parameterization to make it nonlinear (would work with linear 
x = [1 -1 -.1]'; % too but would be able to optimize in a single step, which would be boring) 

% guess 0x (deliberately a bad guess, to take a few steps) 
 
plot(O(:, 1), O(:, 2), '*k') % plot a-s, b-s 
hold on 
xx = linspace(min(O(:, 1)) - .5, max(O(:, 1)) + .5); 
for i = 1:1000 
    yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 
    plot(xx, yy, '-b') % plot the initial guess 
    % evaluate the initial guess 

 
    J = [1 + x(2) * O(:, 1) + x(2) * x(3) * O(:, 1).^2, ... 
        x(1) * O(:, 1) + x(1) * x(3) * O(:, 1).^2, x(1) * x(2) * O(:, 1).^2]; 
    % calculate the Jacobian 
 
    db = O(:,2) - x(1) - O(:,1) * x(1) * x(2) - O(:,1).^2 * x(1) * x(2) * x(3); 
    % calculate current error vector 
  
    dx = (J' * J + 1000 * eye(size(J, 2))) \ J' * db; norm_dx = norm(dx) 

    % solve  
 
    if(norm_dx < 1e-6) % see if we optimize 
        break 
    end 
    x = x + dx % increment 
end 
 
yy = x(1) + x(1) * x(2) * xx + x(1) * x(2) * x(3) * (xx.^2); 

plot(xx, yy, '-r') % plot the final in red 
hold off 
 



Levenberg-Marquardt 

• To control step size, use optimization gain 

𝑔 ∆𝒙 =
𝑆 𝒙 − 𝑆 𝒙 + ∆𝒙

𝐿 0 − 𝐿 ∆𝒙
 

with linear model error 𝐿 ∆𝒙 =
1

2
ℎ 𝒙 + 𝑱∆𝒙 2 

and squared error 𝑆 𝒙 =  ℎ 𝒙 𝟐 

• If the gain is positive, take the step, reduce 𝛼 

• If the gain is negative, keep the current 

linearization and increase 𝛼 at exponential rate 

with each failed step 

 

• See [Madsen, 1999, Methods for NLS Problems] 

for further details 
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Pop Quiz Interlude 

 

 

 

 

• Quick, shout answer to WIN SAUSAGE! 

 

• Mike Powell was: 

A. Cat lady 

B. Hotdog eating champion 

C. Golfer 

D. Computer Scienceman 
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Dogleg optimizer 

• Powell’s Dogleg (there’s also subspace Dogleg) 
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Powell’s Dogleg Optimizer 

• Change gradient direction based on 

magnitude of ∆𝒙, generate step of specified size 

• In solving the ordinary normal equation 

𝑱𝑻𝑱∆𝒙𝐺𝑁 = 𝑱𝑻∆𝒃 we can recover ∆𝒙𝐺𝑁 and also 

∆𝒙𝑆𝐷 = 𝒈
𝒈 2

𝑱𝒈 2 with 𝒈 = −𝑱𝑻∆𝒃 
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ΔxGN 

ΔxGN 

ΔxSD 

ΔxSD 

SD large 

GN small between  

trust radius 



Powell’s Dogleg Optimizer 

• Formally, for trust radius ⍙, the step is 
  

∆𝒙𝐷𝐿 =  

∆𝒙𝐺𝑁 𝑖𝑓 ∆𝒙𝐺𝑁 ≤ ⍙
⍙ ∙ ∆𝒙𝑆𝐷

∆𝒙𝑆𝐷
 𝑖𝑓 ∆𝒙𝑆𝐷 ≥ ⍙

∆𝒙𝑆𝐷 + 𝛽 ∆𝒙𝐺𝑁 − ∆𝒙𝑆𝐷 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  

where 𝛽 =
−𝑏+ 𝑏2−4𝑎𝑐

2𝑎
 with 𝑎 = ∆𝒙𝐺𝑁 − ∆𝒙𝑆𝐷

2, 

𝑏 = ∆𝒙𝑆𝐷
𝑇 ∆𝒙𝐺𝑁 − ∆𝒙𝑆𝐷  and 𝑐 = ∆𝒙𝑆𝐷

2 − ⍙2 

 

• ⍙ is changed based on optimization gain 

• The initial trust radius can be large (unlike LM, 

DL does not resolve the lin. system on bad step) 
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Handling Outliers – Robust Estimation 

• Outliers are a problem in computer vision 

• Bad feature matching (mismatched feature) 

• Reflections (matched to a good feature in a mirror) 

• Moving objects (cars, pedestrians, wind) 

 

• Can try to reject suspicious observations 

 

• Can use robust estimation 
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Robust Estimation 

• Try to identify outliers in the LS framework 

• LS minimize squared error  

𝒙 = argmin𝒙

1

2
 𝑏 − ℎ 𝑥

2
 

big outliers have huge (squared) influence 

• Try to generalize the error 

𝒙 = argmin𝒙  𝜌 𝑏 − ℎ 𝑥  

where 𝜌 𝑢 =
1

2
𝑢2 is ordinary LS loss function 
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Robust Estimation 

• Try to minimize pseudo-L1 error 

𝜌 𝑢 =  

1

2
𝑢2 𝑖𝑓 𝑢 ≤ 𝑎

1

2
𝑎 2 𝑢 − 𝑎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

 

 
 

Huber kernel 
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Normal Equations for Robust Estimation 

• So how to plug it in? Notice that for LS, 

ρ 𝑢 =
1

2
𝑢2 and ρ′ 𝑢 = 1 

• The derivative of loss is score function 

ψ 𝑢 = ρ′ 𝑢  

• This can be used for weights,  
  

𝑱𝑻𝑾𝑱∆𝒙𝐺𝑁 = 𝑱𝑻𝑾∆𝒃 
  

where 𝑾 = diag
ψ 𝒖

𝒖
 

• Let’s try setting 𝒖 = ∆𝒃 
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Robust Least Squares Demo (Matlab) 

O = [0 1; 1 3; 2 3; 2.5 4.9; 3 7]; 

% observations of some 1D function 

% O(:,1) are the arguments, a 

% O(:,2) are the desired fit values, b 

  

a = 1.345; 

% guess some parameter for outlier rejection 

 

for i = 1:10 

    J = … % calculate the Jacobian 

  

    db = … % calculate current error vector 

 

    w = zeros(length(db), 1); 

    for j = 1:length(db) 

        u = db(j); 

        if(abs(u) <= a) 

            w(j) = 1 / u; % resolve division by zero 

        else 

            w(j) = a * sign(u) / u; 

        end 

    end 

    W = diag(w); % calculate the robust weights 

  

    dx = (J' * W * J) \ J' * W * db; 

    % solve normal equation (backslash = solve) 

end 

 

% [plot stuff] 
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Solving Overfitting / Scale Problems 

• Now we‘re overfitting, the points at the bottom 

are all treated as outliers 

• Changing the value of 𝑎 is a temporary solution 

• We need to approximate scale of the problem 

• MAD (median absolute deviation) 

𝑠 = 1.4826 med abs ∆𝒃   

• Now set 𝒖 =
∆𝒃

𝑠
 

 

 

• Alternative to MAD - Huber‘s second proposal 
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Robust Least Squares Demo (Matlab) 

O = [0 1; 1 3; 2 3; 2.5 4.9; 3 7]; 

% observations of some 1D function 

% O(:,1) are the arguments, a 

% O(:,2) are the desired fit values, b 

  

a = 1.345; 

% guess some parameter for outlier rejection 

 

for i = 1:10 

    % [calculate J, db] 

 

    MAD = median(abs(db)); 

    s = 1.4826 * MAD; 

    % calculate MAD 

 

    w = zeros(length(db), 1); 

    for j = 1:length(db) 

        u = db(j) / s; % apply scale 

        if(abs(u) <= a) 

            w(j) = 1 / u; % resolve division by zero 

        else 

            w(j) = a * sign(u) / u; 

        end 

    end 

    W = diag(w); % calculate the robust weights 

 

    % [solve] 

end 

 

% [plot stuff] 
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Robust Least Squares Demo (Matlab) 

O = [0 1; 1 7; 2 3; 2.5 4.9; 3 7]; % turrn the second point into an OUTLIER 

% observations of some 1D function 

% O(:,1) are the arguments, a 

% O(:,2) are the desired fit values, b 

  

a = 1.345; 

% guess some parameter for outlier rejection 

 

for i = 1:10 

    % [calculate J, db] 

 

    MAD = median(abs(db)); 

    s = 1.4826 * MAD; 

    % calculate MAD 

 

    w = zeros(length(db), 1); 

    for j = 1:length(db) 

        u = db(j) / s; % apply scale 

        if(abs(u) <= a) 

            w(j) = 1 / u; % resolve division by zero 

        else 

            w(j) = a * sign(u) / u; 

        end 

    end 

    W = diag(w); % calculate the robust weights 

 

    % [solve] 

end 

 

% [plot stuff] 
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More About Robust Kernels 

• What are the magic numbers (1.4826, 1.345)? 

• Relative estimator efficiency 
  

𝑒 =
E 𝑇2−𝒙 2

E 𝑇1−𝒙 2   
  

where 𝒙 is true solution, E ∙  is expectation 

• Typically compare to NLS, set efficiency to 95% 
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More About Robust Kernels 

• Are there other kernel types? 
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INTERMEZZO II 

And now for something completely different … 
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Solving Linear Systems 

• NLS boils down to solving linearized system 

 

𝑱𝑻𝑱∆𝒙 = 𝑱𝑻∆𝒃 

 

• Most of time is spent there 

• In the remainder, let‘s assume Λ𝒙 = 𝒃 

• In here, Λ is sparse (most of its entries are zero) but 

many of the methods apply to dense matrices too 
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Solving Linear Systems 

• Different methods 

• Direct methods - reduce the matrix to triangular  

• Proven complexity, mature algorithms 

• Need considerable amounts of memory 

• Iterative methods - do a lot of vector math, 

iteratively converge to the solution 

• Needs very little memory 

• Convergence depends on problem, preconditioner 

• Quite young field, not much proven 

• Subspace methods - use Eigenvalue-like algorithms 

to calculate subspace approximations, solve there 
 

• [Davis, 2006, Direct Methods for Sparse Systems] 

• [Saad, 2003, Iterative Methods for Sparse Systems] 
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Direct Methods Primer 

• Consider the two following systems 

 

 
1 7 5
1 5 1
1 2 1

 ∙ 𝒙 =  
9
6
9
  

 

 
1 7 5
0 −2 −4
0 0 6

 ∙ 𝒙 =  
9

−3
7.5

  

 

• In both cases, 𝒙 = 9.75, −1, 1.25  

• What happened? 

• Pivoting for stability, cost. Only one r.h.s. 
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Gaussian Elimination, Backsubstitution 

A = round(rand(3,3) * 10) 

b = round(rand(3,1) * 10) 

 

n = length(A); 

for k=1:n-1 

    for i=k+1:n 

        x = A(i,k) / A(k,k); 

        A(i,k+1:n) = A(i,k+1:n) - x * A(k,k+1:n); % row combine 

        A(i,k) = 0; % we just eliminated it 

        b(i) = b(i) - x * b(k); 

    end 

end 

A 

b 

% Gaussian elimination 

  

x = zeros(n,1); 

for i=n:-1:1 % loop backwards 

    r = b(i) - dot(A(i,i+1:n), x(i+1:n)'); 

    x(i) = r / A(i, i); 

end 

x 

% back-substitution 
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LU decomposition 

• Another old method 

• Factorize Λ = 𝐿𝑈  

• 𝐿 being lower triangular with unit diagonal 

• 𝑈 being upper triangular 

• To solve Λ𝒙 = 𝐿𝑈𝒙 = 𝒃 (and so 𝑈𝒙 = 𝐿−1𝒃) 

• First solve  L𝒚 = 𝒃 forward substitution w/o div 

• Then solve 𝑈𝒙 = 𝒚 back-substitution 

• To work, Λ must be square, invertible 

• Will require pivoting for stability 

• Partial 𝑃Λ = 𝐿𝑈  (reorder rows) 

• Full 𝑃Λ𝑄 = 𝐿𝑈  (reorder rows, cols) 
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LU decomposition 

A = round(rand(3,3) * 10) 

 

LU = A; % works in-place 

for k = 1:n 

    LU(k+1:n, k) = LU(k+1:n, k) / LU(k, k); 

    % divide by pivot (modifies the rest of this column) 

  

    for i = k+1:n 

        x = LU(i, k); 

        for j = k+1:n % explicit loop intended 

            LU(i, j) = LU(i, j) - x * LU(k, j); % causes fill-in in sparse version 

        end 

        % reduce the rest of the matrix 

    end 

    % modify the lower-right submatrix 

end 

  

U = triu(LU) 

L = tril(LU, -1) + eye(size(LU)) 

% unpack to L and U, add identity diagonal to L 
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LU decomposition 

• Several variants, based on ordering of loops i j k 
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LU decomposition 

• In sparse version, we care about fill-in 

 

 

 

 

 

 

 

 

• Depends on order of rows / columns 

a man eats something from his footer 87 

A L+U 



AMD Ordering 

• Approximate Minimum Degree [Amestoy 2004] 
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ENTER CAPTCHA IF YOURE 

AWAKE 
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Cholesky factorization 

• Factorize Λ = 𝑅𝑇𝑅 

• 𝑅 being upper triangular,  

with positive diagonal entries 

• To solve Λ𝒙 = 𝑅𝑇𝑅𝒙 = 𝒃  

• First solve  𝑅𝑇𝒚 = 𝒃 forward substitution 

• Then solve 𝑅𝒙 = 𝒚 back-substitution 

• To work, Λ must be square, symmetric and 

positive-definite (SPD) 

• NLS matrices are (up to numerical precision) 

• Adding small damping on the diagonal usually helps 

• Modified Cholesky factorization 

• Does not need pivoting 
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Cholesky factorization 

A = round(rand(3,3) * 10); 

A = A' * A + eye(size(A)) * 10 % try to make it SPD 

  

R = zeros(size(A)); 

for j = 1:n % for every column 

    for k = 1:j-1 % for all prev cols that are nnz at row j (know those from etree) 

        s = 0; 

        for i = 1:k-1 % for all blocks above the diagonal in the prev column 

            s = s + R(i, k) * R(i, j); % takes elements from two different columns  

        end 

        % cmod; causes fill-in in the current column 

  

        R(k, j) = (A(k, j) - s) / R(k, k); % accesses upper diagonal of A 

    end 

  

    s = R(1:j-1, j)' * R(1:j-1, j); 

    R(j, j) = sqrt(A(j, j) - s); % must be positive (or modified Cholesky) 

    % cdiv 

end 
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Sparse Cholesky 

• Elimination tree theory 

• Calculate tree that drives loops in the factorization 

• Saves time 

• Particular orderings also yield elimination trees with 

independent and balanced subtrees (parallelism) 

• Supernodal Cholesky 

• Sometimes, several columns in the factorization 

have identical nonzero structure - supernodes 

• Treating supernodes as dense allows parallelism, 

GPU acceleration 

• Multifrontal Cholesky 

• Frontal matrices, conceptually similar to supernodes 
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Cholesky factorization - AMD again 
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QR decomposition 

• Relatively new method (in the 60‘s) 

• Factorize 𝐴 = 𝑄𝑅  

• 𝐴 can now be rectangular 

• 𝑄 being orthogonal (𝑄𝑇 = 𝑄−1) 

• 𝑅 being upper triangular (zero rows at the bottom) 

• To solve A𝒙 = 𝑄𝑅𝒙 = 𝒃 

• First solve  𝒚 = 𝑄𝑇𝒃 multiplication* 

• Then solve 𝑅𝒙 = 𝒚 back-substitution 

• No pivoting needed 

• Fill-in depends on column ordering only 

• Out-of-core methods 
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Computing QR decomposition 

• Similar to Gaussian elimination 

• Householder reflections 

• Compute a reflection about a plane (mirror matrix) 

that zeroes a lower part of a column in R 

• Minor tricks (sign choice) for numerical stability 

• Record reflections rather than representing Q 

• Givens rotations 

• Compute rotation matrix that zeros one element in R 

• Record rotation chains rather than representing Q 
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QR decomposition 

• Householder reflections 
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𝑢𝑥 𝑣𝑥

𝑢𝑦 𝑣𝑦
 𝑢′𝑥 𝑣′𝑥

0 𝑣′𝑦
 

𝑢𝑥 𝑣𝑥

𝑢𝑦 𝑣𝑦
 𝑢′𝑥 𝑣′𝑥

0 𝑣′𝑦
 



Slide stolen from Michael Heath‘s lecture 
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Slide stolen from Michael Heath‘s lecture 
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QR decomposition 

• Related to Cholesky 

• 𝐴 = 𝑄𝑅 

• Λ = 𝐴𝑇𝐴 

• Λ = 𝑅𝑇𝑄𝑇𝑄𝑅 = 𝑅𝑇𝑅 

• 𝑅 is the same as in Cholesky factorization, up to the 

sign of the rows (Cholesky always has positive diag) 

• Can directly solve NLS on 𝑱 without forming 𝑱𝑻𝑱  

• 𝑱 = 𝑄𝑅 

• 𝑅∆𝒙 = 𝑄𝑇∆𝒃 

• Numerical benefits 
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Householder QR Demo (Matlab) 

M = round(rand(5, 3) * 10) 

 

[m n] = size(M); 

Q = eye(m, m); % crime against QR: explicit Q 

R = M; % works inplace 

elim = min(m - 1, n); % decide how many cols to eliminate to get triangular R 

for i = 1:elim 

    Aii = R(i, i); 

    Ai_norm = sqrt(R(i:m, i)' * R(i:m, i)); 

    dii = abs(Ai_norm) * sign(sign(Aii) + 0.5); % !!! need zero-avoiding sign function !!! 

    wii = Aii - dii; 

    two_fi_inv_squared = -1 / (wii * dii); 

    % calculate Householder reflection of the i-th column 

  

    for j = i+1:n 

        fj = wii * R(i, j); % the head of column i is replaced by wii 

        fj = fj + R(i+1:m, i)' * R(i+1:m, j); % dot of lower-part of columns i and j 

        fj = fj * two_fi_inv_squared; 

        % calculate columns dot 

  

        R(i, j) = R(i, j) - fj * wii; 

        R(i+1:m, j) = R(i+1:m, j) - fj * R(i+1:m, i); 

        % update jth column 

    end 

    % apply Householder reflections also to the other columns to the right 
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Householder QR Demo (Matlab) 

    for j = 1:m 

        fj = wii * Q(j, i); % the head of column i is replaced by wii 

        fj = fj + Q(j, i+1:m) * R(i+1:m, i); % dot of lower-part of columns i and j 

        fj = fj * two_fi_inv_squared; 

        % calculate columns dot 

  

        Q(j, i) = Q(j, i) - fj * wii; 

        Q(j, i+1:m) = Q(j, i+1:m) - fj * R(i+1:m, i)'; 

        % update jth column 

    end 

    % apply Householder reflections also to the r.h.s columns, in transpose! 

  

    R(i, i) = dii; 

    R(i+1:m, i) = 0; % finally, clear the rest of the current column 

end 

% eliminate lower triangle of M, column by column 
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Schur Complement Trick 

• In BA, it is possible to reorder the system to 

have diagonal submatrices 

• bipartite ordering, MIS 
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57957×3 

92×6 

Λ PΛP-1 

*The sparsity is the same on the left / right. The nnz‘s are just very inflated to be visible and that makes the sparsity appear different. 



Schur Complement Trick 

• Then the matrix is partitioned as 

𝑃Λ𝑃−1 =
𝐴 𝑈

𝑈𝑇 𝐷
 

and the linear system Λ𝒙 = 𝒃 partitioned as 

𝐴 𝑈
𝑈𝑇 𝐷

𝒑
𝒍

=
𝒖
𝒗

 with 
𝒑
𝒍

= 𝑃𝒙 , 
𝒖
𝒗

= 𝑃𝒃  

• The Schur complement of A is  𝐴 − 𝑈𝐷−1𝑈𝑇 

 

a man eats something from his footer 103 

92×6 

92×6 

<1% nnz >40% nnz 



Schur Complement Trick 

• The linear system 
𝐴 𝑈
𝑈𝑇 𝐷

𝑃−1 𝒑
𝒍

= 𝑃−1 𝒖
𝒗

 

can be solved as 

𝐴 − 𝑈𝐷−1𝑈𝑇 𝒑 = 𝒖 − 𝑈𝐷−1𝒗 

𝒍 = 𝐷−1 𝒗 − 𝑈𝑇𝒑  

 

a man eats something from his footer 104 

57957×3 

92×6 



Schur Complement Trick 
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ITERATIVE METHODS? 

Who will do seminar on 
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SUBSPACE METHODS? 

Who will do seminar on 
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BACK TO BUNDLING 

And now … 
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Calculating Covariances 

• System covariances (variable covariances) 

• Different from edge (observation) covariances 

• Obtained by inverting the information matrix Λ 

• Inverse Σ = Λ
−1

 is fully dense 

a man eats something from his footer 109 

Λ 



Calculating Covariances 

• Use Cholesky factorization & backsubstitution, 

keep only parts of the covariance to save 

memory 

• The way Google‘s Ceres does it, gruesome 

performance 

• Use SVD 

• Another dead end explored by Google™  
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Calculating Covariances 

• Use recursive formula for calculating only some 
parts of the inverse 

 

Σ𝑖𝑖 =
1

𝑅𝑖𝑖

1

𝑅𝑖𝑖
−  𝑅𝑖𝑘Σ𝑘𝑖

𝑛

𝑘=𝑖+1,𝑅𝑖𝑘≠0

 

Σ𝑖𝑗 =
1

𝑅𝑖𝑖
−  𝑅𝑖𝑘Σ𝑘𝑗

𝑛

𝑘=𝑖+1,𝑅𝑖𝑘≠0

−  𝑅𝑖𝑘Σ𝑗𝑘

𝑛

𝑘=𝑗+1,𝑅𝑖𝑘≠0

 

 

• [Björck, 1996, Numerical methods for least 

squares problems, SIAM] 
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Calculating Covariances 

• Use recursive formula for calculating only some 

parts of the inverse 

 

 

 

 

 

 

 

• [Ila, 2015, Fast Covariance Recovery in 

Incremental Nonlinear Least Square Solvers, ICRA] 
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Incremental Covariances 

• In SLAM, we often only have small increment 

• Updating covariance cheaper than 

recalculating from scratch 

 

∆Σ = Σ 𝐴𝑢
𝑇 𝐼 − 𝐴𝑢Σ 𝐴𝑢

𝑇 −1
𝐴𝑢Σ  

∆Σ = −Σ𝐴𝑢
𝑇 𝐼 + 𝐴𝑢Σ𝐴𝑢

𝑇 −1
𝐴𝑢Σ 

 

where Λ = 𝐴 𝑇𝐴 = Λ + 𝐴𝑢
𝑇𝐴𝑢 with 𝐴 = 𝐴 + 𝐴𝑢 

• Need only a few elements of Σ  (can use 

backsubstitution) 

• [Ila, 2015, Fast Covariance Recovery in 

Incremental Nonlinear Least Square Solvers, ICRA] 
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Visualizing Covariances 
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ARE YOU STILL ALIVE? 

The end 
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